Vr High-quality Volume Rendering of Projection-based Volumetric Data

نویسندگان

  • Peter Rautek
  • Eduard Gröller
  • Sören Grimm
چکیده

Volume rendering techniques are conventionally classified into two categories represented by direct and indirect methods. Indirect methods require to transform the initial volumetric model into an intermediate geometrical model in order to efficiently visualize it. In contrast, direct volume-rendering (DVR) methods can directly process the volumetric data. Modern 3D scanning technologies, like CT or MRI, usually provide data as a set of samples on rectilinear grid points, which are computed from the measured projections by discrete tomographic reconstruction. Therefore the set of these reconstructed samples can already be considered as an intermediate volume representation. In this diploma thesis a new paradigm for direct direct volume rendering (DVR) is introduced, which does not even require a rectilinear grid, since it is based on an immediate processing of the measured projections. Arbitrary samples for ray casting are reconstructed from the projections by using the Filtered Back-Projection algorithm. The method presented in this thesis removes an unnecessary and lossy resampling step from the classical volume rendering pipeline. Thus, it provides much higher accuracy than traditional grid-based resampling techniques do. Furthermore a novel high-quality gradient estimation scheme, which is also based on the Filtered Back-Projection algorithm is presented. Finally we introduce a hierarchical space partitioning approach for projection-based volumetric data, which is used to accelerate DVR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

D2VR: High-Quality Volume Rendering of Projection-based Volumetric Data

Volume rendering techniques are conventionally classified as either direct or indirect methods. Indirect methods require to transform the initial volumetric model into an intermediate geometrical model in order to efficiently visualize it. In contrast, direct volume rendering (DVR) methods can directly process the volumetric data. Modern CT scanners usually provide data as a set of samples on a...

متن کامل

Advanced High-Quality Maximum Intensity Projection for Volume Visualization

Maximum Intensity Projection (MIP) is a volume rendering technique which is used to extract high-intensity structures from volumetric data. At each pixel the highest data value encountered along the corresponding viewing ray is determined. MIP is commonly used to extract vascular structures from medical MRI data sets (angiography). Due to lack of depth information in MIP images, animation of th...

متن کامل

GPU-based cell projection for large structured data sets

We present a practical implementation of a cell projection algorithm for interactive visualization of large volumetric data sets using programmable graphics cards. By taking advantage of the data regularity, we can avoid computing some steps of the original algorithm with no quality loss. Furthermore, performance is increased since more than half the processing time is dedicated only for render...

متن کامل

Real-Time Volume Rendering for Virtual Colonoscopy

We present a volume rendering system that is capable of generating high-quality images of large volumetric data (e.g., 512) in real time (30 frames or more per second). The system is particularly suitable for applications that generate densely occluded scenes of large data sets, such as virtual colonoscopy. The central idea is to divide the volume into sets of axis-aligned slabs. The union of t...

متن کامل

Volumetric-csg | a Model-based Volume Visualization Approach

This paper presents a Volumetric-CSG (VCSG) method for the representation of volumetric objects and their operation, such as transformations, cutting and Boolean operations. A new volume rendering algorithm is developed for visualizing the VCSG models. The algorithm rst generates optimal target blocks for eecient model operations by adaptive subdivision of the target volume, and then volume ren...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005